Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions.
نویسندگان
چکیده
The high mobility group (HMG) proteins of the HMGB family are architectural factors in eukaryotic chromatin, which are involved in the regulation of various DNA-dependent processes. We have examined the post-translational modifications of five HMGB proteins from maize suspension cultured cells, revealing that HMGB1 and HMGB2/3, but not HMGB4 and HMGB5, are phosphorylated by protein kinase CK2. The phosphorylation sites have been mapped to the acidic C-terminal domains by analysis of tryptic peptides derived from HMGB1 and HMGB2/3 using nanospray ion trap mass spectrometry. In native HMGB1, Ser(149) is constitutively phosphorylated, whereas Ser(133) and Ser(136) are differentially phosphorylated. The functional significance of the CK2-mediated phosphorylation of HMGB proteins was analyzed by circular dichroism measurements showing that the phosphorylation increases the thermal stability of the HMGB proteins. Electrophoretic mobility shift assays demonstrate that the phosphorylation reduces the affinity of the HMGB proteins for linear DNA. The specific recognition of DNA minicircles is not affected by the phosphorylation, but a different pattern of protein-DNA complexes is formed. Collectively, these findings show that phosphorylation of residues within the acidic C-terminal domain of the HMGB proteins can modulate protein stability and the DNA binding properties of the HMGB proteins.
منابع مشابه
Specificity of the stimulatory interaction between chromosomal HMGB proteins and the transcription factor Dof2 and its negative regulation by protein kinase CK2-mediated phosphorylation.
The high mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that can contribute to transcriptional control by interaction with certain transcription factors. Using the transcription factor Dof2 and five different maize HMGB proteins, we have examined the specificity of the HMGB-transcription factor interaction. The HMG-box DNA binding domain of HMGB1 is sufficien...
متن کاملSingle-molecule kinetics reveal microscopic mechanism by which High-Mobility Group B proteins alter DNA flexibility
Eukaryotic High-Mobility Group B (HMGB) proteins alter DNA elasticity while facilitating transcription, replication and DNA repair. We developed a new single-molecule method to probe non-specific DNA interactions for two HMGB homologs: the human HMGB2 box A domain and yeast Nhp6Ap, along with chimeric mutants replacing neutral N-terminal residues of the HMGB2 protein with cationic sequences fro...
متن کاملMechanism of high-mobility group protein B enhancement of progesterone receptor sequence-specific DNA binding
The DNA-binding domain (DBD) of progesterone receptor (PR) is bipartite containing a zinc module core that interacts with progesterone response elements (PRE), and a short flexible carboxyl terminal extension (CTE) that interacts with the minor groove flanking the PRE. The chromosomal high-mobility group B proteins (HMGB), defined as DNA architectural proteins capable of bending DNA, also funct...
متن کاملNucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins.
High mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that as architectural factors are involved in the regulation of transcription and other DNA-dependent processes. HMGB proteins are generally considered nuclear proteins, although mammalian HMGB1 can also be detected in the cytoplasm and outside of cells. Plant HMGB proteins studied so far were found exclusiv...
متن کاملRole of the Acidic Tail of High Mobility Group Protein B1 (HMGB1) in Protein Stability and DNA Bending
High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 2 شماره
صفحات -
تاریخ انتشار 2002